Flow of Gases through Tubes and Orifices

نویسنده

  • R. Gordon Livesey
چکیده

The nature of gas flow in pipes and ducts changes with the gas pressure and its description is generally divided into three parts or regimes. The flow dynamics are characterized by A, the molecular mean free path, in relation to some characteristic dimension such as the diameter of a pipe. The flow regime cannot be determined from the mean free path alone but only from the relation of this parameter to the characteristic dimension. The relation is known as the Knudsen number, defined as*

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and numerical modeling of rarefied gas flows through orifices and short tubes

Flow through circular orifices with thickness-to-diameter ratios varying from 0.015 to 1.2 is studied experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to over 700. Good agreement between experimental and numerical results is observed for mass flow and thrust corrected for the experimental facility...

متن کامل

Flow and Pressure Distributions in Short Heat Exchanger Cores with Abrupt Entrance and Exit

The typical installation of a heat exchange device usually involves a flow contraction at the core entrance and a flow expansion at the core exit. Repeated flow Contraction and expansion are experienced in the flow passages of some compact heat exchangers. The latter refers to the flow passages in the plate-fin type with louvered fins or stripped fins and in the tubular type with dimpled-circul...

متن کامل

Comparison of convective heat transfer of turbulent nanofluid flow through helical and conical coiled tubes

Application of nanofluid and coiled tubes are two passive methods for increasing the heat transfer. In the present study, the turbulent flows of water and nanofluid in coiled tubes heat exchanger were numerically studied. CuO-water nanofluid containing 1 vol% copper oxide nanoparticles was used and single-phase approach was considered for nanofluid flow. The effect of different geometrical para...

متن کامل

Pressure-driven fluidic delivery through carbon tube bundles.

The aim of this work is to demonstrate controlled flow through macroscopically long (approximately 1 cm) carbon tubes (0.5-1.8 microm in radius). A model, high-throughput, pressure-driven fluidic setup, which features a large number of parallel carbon tubes forming a bundle, is fabricated and tested. The carbon tubes are synthesized and self-assembled via co-electrospinning and subsequent carbo...

متن کامل

Effects of Rib Shapes on Heat Transfer Characteristics of Turbulent Flow of Al2O3-Water Nanofluid inside Ribbed Tubes

In this paper, convection heat transfer of Al2O3-water nanofluid turbulent flow through internally ribbed tubes with different rib shapes (rectangular, trapezoidal and semi-circular) is numerically investigated. For each rib shape, the optimum geometric ratio and volume fraction were calculated using entropy generation minimization technique. The governing equations in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005